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Summary

The principle of correspondence is invoked to determine Laplace trans-
form domain solutions to the surface mass loading problem for radially
stratified visco-elastic (Maxwell) spheroids. These Laplace transform
domain solutions are expressed in terms of visco-elastic analogues of the
conventional surface load Love numbers of elasticity. These visco-elastic
Love numbers may be approximately transformed to the time domain
using an extremal technique. Application of this technique shows that the
Love number time histories may be well approximated by the linear super-
position of a discrete set of purely exponential relaxations plus a constant
term. Alternatively the discrete spectrum of relaxation times involved
in the synthesis of each Love number time history may be found exactly
by solving the associated homogeneous problem. Such solutions determine
the set of eigen-decay times associated with the normal modes of viscous
gravitational relaxation of the visco-elastic planetary model. The solution
of the inhomogeneous problem may be expressed in the form of a normal
mode expansion. This normal mode expansion is employed as the basis
for the construction of a rigorous first-order perturbation theory for the
inference of the viscosity of the deep interior of the planet. A variational
principle is derived which determines to first order that shift in position of
a free decay pole in the relaxation spectrum which is forced by the addition
of a radially-distributed perturbation of viscosity to the starting model.
This determines the differential kernels required for the solution of the
inverse problem. The uniqueness of the state of isostatic equilibrium
for the viscously incompressible Maxwell models employed in this analysis
is demonstrated and this uniqueness allows us to calculate the shift in the
residue which is associated with the shift in position of a free decay pole for
the inhomogeneous problem. The inhomogeneous problem is thus closed
to first order. A formula is derived for the differential kernels appropriate
to the inhomogeneous problem. The time domain form of these kernels
may be calculated analytically. The structure of the full inverse theory
is sufficiently simple that it may be employed to rigorously test the com-
patibility of the simple Maxwell model with the observed relaxation of
the Earth’s shape which accompanied deglaciation at the end of the last
ice age.
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1. Introduction

The inference of the viscosity of the planetary mantle from observed slow changes
in the Earth’s shape is a classical problem in Geophysics. It has been treated by
many authors beginning with Haskell (1935, 1936, 1937), Vening Meinesz (1937),
Niskanen (1948), and Heiskanen & Vening Meinesz (1958). All of these authors
attempted to infer mantle viscosity by assuming that the mantle flowed like a Newton-
ian viscous fluid. The coefficient of viscosity was assumed to be a constant function of
depth. Much of this work was concerned with the analysis of the isostatic recovery
of Fennoscandia after removal of its late Wisconsin period ice sheet; a process which
had begun about 20 000 years ago. However, Crittenden (1963) did the same analysis
for the Lake Bonneville region and discovered that although the areal extent of the
two loads differed by an order of magnitude, the relaxation times for the two regions
differed only slightly, both being on the order of 5000 years. These results seemed to
demand that the Newtonian flow (a transient convection) involved in the relaxation
process should be confined in a layer near the surface. McConnell (1968) realized
that such effective confinement could be achieved by assuming that the mantle
viscosity was not uniform but increased as a function of depth. All of these conclusions
and refinements of conclusions where reached, however, on the basis of the explicit
assumption that the isostatic recovery of a region as large as Fennoscandia could be
adequately treated in terms of a plane layered earth model. Because no solution to the
full spherical self-gravitating problem existed it was not possible to test the assumption
rigorously. Nevertheless, McConnell’s basic conclusion that the viscosity of the mantle
must increase substantially with depth in order to satisfy the relaxation time data has
been widely accepted as valid.

Recently, further data has been forthcoming on the isostatic adjustment process
involving a much larger areal extent of the Earth’s surface. This data (Walcott 1972;
Andrews 1974) is connected with the melting of the Laurentide ice sheet which dis-
appeared over the same time interval as did the ice sheet in Fennoscandia. Data on
the unloading history of this region has recently been discussed by Patterson (1972).
Since this glaciation covered all of Canada and parts of the Northern United States,
its melting led to the addition of a considerable water load to the ocean basins.
Therefore, the region of active land emergence and submergence involved in the
isostatic adjustment process extends over virtually the entire North American con-
tinent.

The existence of this new relative sea-level data set connected with a large-scale
example of isostatic adjustment has encouraged several authors to construct global
theories of the adjustment process. To date two such theories have been constructed;
the first by Cathles (1971) and the second by Peltier (1974, hereafter referred to as
Paper 1). The basic structures of these two calculations were entirely different.
Both of these theories have led their authors to the same conclusion, namely that the
data set from the large-scale recovery are basically incompatible with a mantle vis-
cosity which increases substantially with depth. Cathles (1971) was led to this con-
clusion by comparison of the predictions of his model with relative sea-level curves and
Peltier (1974) by the examination of the Green functions for the direct problem
coupled with the principle of superposition. Peltier & Andrews (1976) have
reinforced the conclusion further by application of the theory in Paper 1 to the
generation of an extensive set of relative sea-level curves. On the basis of these
global calculations both the data from the Laurentide region and from Fennoscandia
appear to be in accord with a mantle viscosity that is uniform from the core-mantle
boundary to the base of the lithosphere and which has a value that does not differ
greatly from 10*2 Poise (cgs).

A natural question then arises, as to why the previous calculations are not in
accord with the more recent ones.



Glacial-Isostatic adjustment—II 671

There are additional results to support the notion that the lower mantle does not
have a viscosity which is much in excess of that of the upper mantle. In particular,
O’Connell has shown (subject perhaps to some minor qualification) by the analysis
of the non-tidal acceleration of the Earth’s rotation deduced from ancient eclipse data,
and by assuming that this was produced by the change in the Earth’s principal moment
of inertia during and after deglaciation, that the lower mantle should not have a
viscosity much in excess of 10?2 P. This idea followed Dicke’s (1969) original
suggestion. Again following a different tack, Goldreich & Toomre (1969) deduced
on the basis of their polar wandering model that the viscosity of the lower mantle
should be of the same order.

The apparent contradiction therefore, remains. Brennan (1974) has attempted to
resolve this contradiction by invoking a strain rate dependent upon viscosity. This
was originally suggested by Weertman (1972) as an appropriate assumption for the
Earth’s upper mantle, and calculation was reasonably successful. However, an
alternative hypothesis must be tested before the assumption of Newtonian behaviour
is discarded. For even with a load the size of the Fennoscandian ice sheet the inference
of mantle viscosity at even a moderate depth in terms of a plane layered model may
not be possible. The inherent lack of resolving power in McConnell’s original data
has been discussed by Parsons (1972) who also employed a plane layered model of the
relaxation process. Assuming that McConnell’s original data is accurate (and there
is some question of this) we have attempted in the following analysis, to isolate the
property of the spherical visco-elastic self-gravitating models, which would allow the
reconciliation of McConnell’s data with a mantle viscosity profile that is not a
strongly increasing function of depth. This reconciliation of McConnell’s data
with a uniform mantle viscosity profile is a by-product of the central theme of this
paper. The theme, simply stated, is to show how it is possible to construct a rigorous
theory for the inference of mantle viscosity, and to thereby quantify the extent of our
ignorance of this parameter.

We adopt at the outset, the implicit formulation of the problem given in Paper 1
and explicitly applied by Peltier & Andrews (1976) to the generation of relative sea-
level curves for comparison with the observations. We show that within the context
of this formalism it is possible to construct a theory with the required accuracy for
the task we have set ourselves. The application of this formalism to the real data set
will be fully described in a later article. Some of the discussion in the first two sections
of the paper is basically a review of material described more fully in Paper 1, however,
we require these results here and therefore, some brief repetition is necessary.

2. Theoretical basis of the forward problem

We assume that the rheological properties of the planet are amenable to description
in terms of a simple linear visco-elastic (Maxwell) solid. When subject to an applied
stress such a material behaves instantaneously like a Hookean elastic solid but
thereafter is subject to a continuous anelastic deformation or creep. In this latter
relaxation regime the material tends to behave exactly as if it were an incompressible
Newtonian viscous fluid. This viscous mode of response is progressively established
with ever-increasing accuracy as a function of time after the first application of the
stress field. Such a simple creep mechanism is rigorously justifiable on the basis of
solid-state theory only if the level of the stress field is sufficiently low. Then the
material creeps by the diffusion of impurities (i.e. lattice vacancies) along and across
grain boundaries (Herring 1950) and the movement of internal dislocations may be
neglected. Whether or not this mechanism is appropriate to mantle material is still a
matter of considerable controversy (Weertman 1970). By thoroughly examining the
extent to which the Maxwell model is compatible with the observed relaxation of
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the Earth’s shape following Pleistocene deglaciation we hope to be able to focus
more sharply on this problem.

The stress—strain relation for a Maxwell solid has the following form (Malvern
1969)

i+ (ufv) (tij— 374 0y) = 2pé;;+Aé;;0;; (1)

where 7;; and e;; are respectively the stress and strain tensors; u and A are the usual
Lamé constants of elasticity and v is the effective Newtonian viscosity. The dot
denotes time differentiation and d;; is the usual unit diagonal tensor. Since we intend
to apply the correspondence principle to analyse the mechanical behaviour of the
material with stress—strain relation (1) we require the Laplace transform domain form
of this relation. Performing this operation and contracting the resulting tensor
relation we obtain after some manipulation the final form of the equation relating
the Laplace transformed stress and strain as

Tiy = A(S) &0+ p(s) & )
where the tilde indicates Laplace transformation and where

_ As+puKlfy

K==L ©)
...

.u(s) S s+,u./v (4)

K, = A+3p. (5)

The functions A(s) and u(s) are compliances and K, is the usual elastic bulk modulus.
In terms of A(s) and u(s) the Laplace transformed stress strain relation has exactly
the same form as that for a Hookean elastic solid. The correspondence principle
then assures us that if we are willing to solve an ¢ equivalent ’ elastic problem with the
stress strain relation (2) many times for different values of the Laplace transform
variable s then we shall have constructed the Laplace transform of the desired solution
to the problem. Some of the history of this principle and of its range of applicability
is discussed in Paper 1. Cathles (1971), though he was aware of this principle, and in
fact went through the formal exercise of constructing (2), made no use of it in his
spherical model of the adjustment process. He rather integrated simultaneously the
separate elastic and Newtonian viscous field equations. In Paper 1 it was shown that
if explicit use is made of the correspondence principle then the theory assumes a
much simplified form. Because of this simplicity of form, results which would other-
wise prove cumbersome to obtain fall out naturally.

The appropriate ¢ equivalent ’ elastic problem for the analysis of the surface mass
loading of a visco-elastic sphere is the surface mass loading problem for an elastic
sphere. This has been discussed at some length by Farrell (1972) and has been employ-
ed by him in the description of ocean tidal loading (Farrell 1972). The correct field
equations for the present problem are thus the Laplace transformed and linearized
(we assume that the strains produced by loading are small) equation of momentum
balance and Poisson’s equation. These have the form (Backus 1967)

V.%—V(pgii).e,)—pVP+gV.(pii)e, =0 (6)
V2§ = —4nGV. (pii). (7

In equations (6) and (7) p is the density of the spherically stratified, hydrostatic
reference state, g the radially dependent gravitational acceleration in this state,
ii the Laplace transformed displacement vector, ¢ the perturbation of the ambient
gravitational potential (both that produced by the mass load on the surface if any
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and that due to variations from the reference state density), and G is Newton’s
gravitational constant. The full effect of self-gravitation is included. The s-dependence
of solutions to these equations is contained implicitly through the form for ¥ given
in equation (2). Asdescribed in Paper 1, we seek solutions to (5) and (6) for spherically
symmetric earth models which have a free outer surface except perhaps at a point of
loading.

In solving the inhomogeneous problem in Paper 1 we assumed that the time
dependence of the surface mass load was a Dirac delta function and that its spatial
dependence had the same form. On account of this particular choice for the time
dependence of the load, the boundary conditions on normal and tangential stress
and on the perturbation of the gravitational potential are independent of the Laplace
transform variable s. Furthermore, because of the symmetry of the response to such
a point load the ¢ equivalent ’ elastic equations (5) and (6) may be reduced to the
spheroidal system of equations, exactly the same system as employed in the description
of the free spheroidal modes of elastic gravitational oscillation of the Earth (Backus
1967) except that in (6) the inertial forces do not appear. The spheroidal system
involves three scalar variables #,, i, and ¢ which are respectively the radial and
tangential displacements and the gravitational potential perturbation. Three additional
dependent variables are then introduced, these being the radial and tangential com-
ponents of the stress tensor, 7,, and 7,4 and a variable g related to the radial gradient
of potential perturbation as is fully described in Paper 1. When each of these variables
is expanded in terms of vector spherical harmonics with Legendre coefficients U,
Vi, @, T, Ty, and Q, respectively, then the equations (5) and (6) reduce to a single
matrix equation in the usual way as

dy
- =AY (8)

where the matrix A is given in Paper 1 but it is exactly the same (minus inertial terms)
as that obtained in the free oscillations problem so long as the elastic Lamé constants
are replaced by their compliance forms (3) and (4). :

In analogy with the equivalent elastic surface loading problem, in Paper 1 we
introduced dimensionless Love numbers A, k;, I, which are now functions of the
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FiG. 1. Viscosity Profiles for models 1-3.
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FiG. 2. Plots of s-spectra /,(s) for selected values of n (marked on figure) from
viscosity model 1. Note the asymptotes for large and small s.

three variables 7, I, and s. If U;, ¥}, and ®, , arise from a force field with gravitational
potential @, (¥, = @, ;+®,, ;) then these Love numbers were defined as

kl (J", S) 1 gUl(r: S)
Ii(r, = Vi(r,
Iéfgr,ss)) ®,,,(r) i’: (:(},81) ®)

In Paper 1, we calculated these Love number s-spectra for several different viscosity
models of the interior. Examples of Love number s-spectra viscosity models 1-3
illustrated by Fig. 1 are shown for /,(s) and r = a (where a is the Earth’s radius) in
Figs 2, 3, and 4 respectively. The characteristics of these spectra play an important
role in the formulation of the inverse problem. The large s asymptotes of these spectra
are exactly the surface load Love numbers for the elastic problem which have been
calculated by previous authors (e.g. Farrell 1972). The small s asymptotes are con-
nected with the state of isostatic equilibrium as we will show. The elastic structure
of all models used in this work is exactly that of the Gutenburg-Bullen model A which
is described for example by Alterman, Jarosch & Pekeris (1961). The unit of time
employed in all calculations is 10° yr and thus s = 1 in the above figures corresponds
to a decay time of 10* yr. In all cases the response has been calculated for a 1kg
point mass load.

In Paper 1 we showed that these s-spectra could be transformed to the time domain
(approximately) by application of an extremal technique due to Schapery (1962).
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This inversion was facilitated by splitting the large s-asymptotes from each spectrum
as
hy(s) = hY (s)+hE
(10)
k,(s) = kly(s)‘l’kls.

After inversion we obtained time dependent viscous parts of the surface load Love
numbers in the form (e.g. for 2," (¢))

hY () = 3 riexp (—1s) (11)

where the s/ are a set of sampling points (pivots) of each of the Love number s-spectra
and the r_,’J thus constitute a discrete approximation to a distribution function of
relaxation times. These r;' were determined for each spectrum by the solution of a
simultaneous set of linear equations which were in turn fixed by the extremal argument.
Examples of the Love number time histories for the viscous part of the response are
illustrated in Figs 5, 6 and 7 for the 4, () and for the three viscosity models described
in Fig. 1 respectively.

Given these Love number time histories, in Paper 1 we went on to construct
Green functions for the several possible signatures of the process. These Green
functions are obtained by summing infinite series. For example, the Green function
for radial displacement in our theory has the form

G, 1) == 3 U0+ 5(0)] Py cos), (12)

where the P, are the usual Legendre polynomials and where @ and m, are respectively
the Earth’s radius and mass. The §(¢) dependence of the /E part of (12) indicates that

IRERLL

| 1N T (R O 1 S N 5 5 O T I oy I I 1

0]
-4 -3 -2 -1 (0] | 2 3 4
LOG g (S)

FiG. 3. Same as Fig. 2 but for viscosity model 2.
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Fic. 4. Same as Fig. 2 but for viscosity model 3.

the elastic response of the planet to an applied surface load is immediate. Examples
of these Green functions (viscous parts only) for radial displacement with the three
viscosity models discussed previously are shown in Figs 8, 9 and 10 respectively,
for viscosity models 1, 2 and 3. Given these Green functions we are in a position to
write down a simple solution to the forward problem of computing the visco-elastic
response of the planet to a given space and time dependent surface mass load. This
solution of the forward problem is discussed more fully in Peltier & Andrews (1976).

However, if we are to make further progress with the theory we are obliged to
consider critically the approximate solution of the forward problem which is implicit
in the above derivation of these Green functions. In particular we might ask why the
apparently crude approximation (11) seems to work so well. In Paper 1 we justified
the use of the expansion (11) on the basis of a physical argument concerning the
analogy with the decay spectrum of a viscous sphere (Darwin 1879). Here we treat
the problem in more detail.

In the Laplace transform domain (11) has the form

hY(s) & 5 —2 (13)

7 os+s)

This approximate s-spectrum has simple poles on the negative real s-axis where
s = —s;. We note that the exact spectrum IY (s) is the spectrum for free decay of the
special harmonic of order ! in the decomposition of the non-dimensional radial
displacement because the time dependence of the surface mass load has been assumed
to be a Dirac function. For all ¢ > 0 the surface is unloaded.

We may well ask whether the exact s-spectrum for /,"(s) the same form as (13).

This could be established directly by showing that 4,"(s) has a discrete set of infinities
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FiG. 7. Same as Fig. 6 but for viscosity model 3. Note increased relaxation times
for large n Love numbers.

-26F

-3,92 1 Il.l-il 1 |||(|) 1 IIII L |||;21 -
LOG 5(6)

Fic. 8. Viscous part of the impulse response Green function for model 1. Note the
inward migrating peripheral bulge at intermediate ¢ values.
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on the negative real s-axis. However, we choose to proceed in a more conventional
way. Consider the homogeneous boundary value problem associated with the
simultaneous set of o.d.e.’s (8) in the Laplace transform domain. The boundary
conditions for this homogeneous problem are

T.=0
Ty =0 (14)
D=0

As described in Paper | the three linearly independent sets of starting solutions to
(8) are propagated to the surface r = a by numerical integration. For arbitrary s it
will not be possible to satisfy the homogeneous boundary conditions (14). If we denote
by T,/, Ty, ®7 (j =1, 3) the independent surface values of the functions in (14)
then if and only if

S = det (T, Ty, ®’) = 0 (15)

is it possible to construct a non-trivial solution to the problem. The values of s for
which (15) is valid constitute a discrete set of eigenvalues of equation (8) subject to
boundary conditions (15) and the eigenfunctions associated with each eigenvalue
may be determined to within an arbitrary multiplicative constant. The (perhaps
infinite) set of eigenvalues for the homogeneous problem is just the set of s, which
appears in the approximate solution (13) except that they are not now selected
arbitrarily on the basis of the shape of the spectra /1,(s) of the inhomogeneous problem
but rather are determined exactly as the zeros of the secular function (15) of the
associated homogeneous problem. If we can determine the set s;! = §;' then equation
(13) which is the approximate solution of the inhomogeneous problem has the exact
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F1G. 9. Same as Fig. 8 but for viscosity model 2.
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FiG. 10. Same as Fig. 8 but for viscosity model 3.

equwa]ent form (similarly for the viscous parts of the remaining Love numbers
k”,and 1Y)

_J'_
W =2k (16

where the 5 are the eigenvalues of the associated homogeneous problem (the poles
of the s—spectrum for the inhomogeneous problem) and 7/ is the residue at the pole
§/. Equation (16) is in fact a normal mode expansion for the viscous part of the
surface load Love number A, Gilbert (1970) has shown that the surface load Love
numbers in static elasticity have a normal mode expansion in terms of the zero
frequency limit of normal modes of elastic-gravitational oscillation of the earth.
Here we see that the viscous parts of the surface load Love numbers first introduced
in Paper 1 for the visco-elastic problem have an equivalent expansion in terms of the
¢ normal modes of viscous gravitational relaxation °.

In Fig. 11 we show what shall be referred to as a ¢ relaxation diagram * for model 1
which has a uniform viscosity of 10?2 P from the Earth’s surface to the core-mantle
boundary and an inviscid core. It is a plot of the eigenvalues of the homogeneous
problem §; as a functmn of Legendre degree I. Each eigenvalue §;' has an associated
relaxation time 7;' = 1/5; and for each ! we have identified a series of modes of
relaxation j. This series of modes of relaxation j contains members of three distinct
families which we denote by C, M and T. These refer explicitly to the family of core
modes, the family of mantle modes and the family of elastico-viscous transition modes.
The first two of these families are associated with the two principal density dis-
continuities in the planetary model; namely that at the core-mantle interface and
that at the Earth’s surface. These two families each consist of a fundamental mode
plus an infinite sequence of ° overtones’ ‘associated with the stratification. The
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FiG. 11. Relaxation diagram for viscosity model 1. Note the linearity of the
relation for the mode MO for / sufficiently large. This is the half-space limit marked
on the figure.

fundamental modes are denoted by C0 and MO respectively and the overtone sequence
by M1, M2 ...; C1,C2.... In the seven decade range of relaxation times which we
have investigated we have been able to locate only a few of the mantle overtones
and none of the overtones which should be associated with the core sequence.
The family of T modes is associated with the transition from elastic to Newtonian
viscous behaviour. As might be expected the members of this family have associated
relaxation times which are short compared to those associated with members of the
other two groups. Parsons (1971) has previously computed approximations to the
fundamental modes CO and MO based upon an extension of Darwin’s (1879) analysis
of the uniform viscous sphere under the assumption that both the mantle and core
have uniform density. Here we have accurately determined these modes for a full
density stratified real earth model and have in addition been able to calculate their
most important overtones. The T modes have not been previously reported.

There are several additional features of the relaxation diagram that warrant
discussion. Firstly the break in the mode C0 at ] = 19 is an artifact of the numerical
analysis. Beyond I = 18 the starting depth for the numerical integration of (8) is
above the core mantle boundary. Since it is this boundary which gives rise to the
mode it is not surprizing that it is very poorly determined numerically when the
integration does not pass through the boundary itself. The second feature of note is
the fact that, for sufficiently large /, the graph of log;,(—s) vs log! tends towards a
straight line. This is precisely the result which one should obtain in the uniform half-
space limit for the dependence of relaxation time upon wavelength (McConnell 1965).
In the limit of small ¢ with I large we can find the half-space wavenumber equivalent
to ] using the asymptotic relation
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FiG. 12. Plots of the radial dependence of the normalized square of the strain

deviator for modes located along the branch MO in Fig. 11. The curves (a)-(f)

correspond respectively to / = 2, 7 inclusive. Note that as / increases the shear

energy density is progressively more highly concentrated in the near surface
region.

The co-ordinate distance 0 in a spherical co-ordinate system becomes equal to rfa
in the plane cylindrical co-ordinate system where a is the radius of the Earth and
where the tangent plane for the cylindrical system touches the Earth’s surface at
0 = 0. Inthecylindrical system the horizontal wavenumber ky; = (I+%)/a. McConnell
(1965) and earlier authors have shown that for the half space of constant density p,
and gravitational acceleration g the relaxation time 7' = 1/5;' is such that

-_1; _ 2vky 18)
85 Pof
thus
log.ijl = —logky

and the plot of log ;' vs log ky (or log(l) for sufficiently large ) should be a straight
line with a slope of — 1. This is obviously true for the MO mode in Fig. 11.

In Figs 12, 13 and 14 we plot a function which is diagnostic of the mode type for
several values of I along the M0, CO and M1 branches. This function is essentially
the radially dependent and appropriately normalized square of the strain deviator
A;; for the particular mode in question. The function A;; is defined as



Glacial-Isostatic adjustment—II 683

{a} (d)

inl-
n

r/g —=

(b) (e)

r/g —=

inp

5 r/a —s

1/Q —=

(c) (f)

] ] 1
5 /g —» . 5 r’a —»

Fia. 13. Same as in Fig. 12 except along the branch MI1.

Its square A;;.A;; has a radially dependent part which may be calculated from the
normal mode eigenfunctions (see Section 5). It is intimately related to the shear energy
distribution in the viscous gravitational relaxation modes just as it is intimately
related to the shear energy in the elastic gravitational normal modes of free oscillation.
The function A;; A;; also plays an important role in determining the differential
kernels in the inverse problem for viscosity as we shall see. Inspection of this function
in Figs 12-14 immediately explains our particular choice for the mode labelling which
we have employed. The fundamental core mode has its shear energy concentrated
at the core-mantle interface while the fundamental mantle mode has its shear energy
concentrated near the Earth’s surface. The overtone mode M1 has a radial structure
similar to MO but its shear energy is not so highly confined in the near surface region.
The T modes have radial structure functions which are similar to the M modes.
Because of the complex mode structure apparent in Fig. 11 even for a mantle with
uniform viscosity we may well be concerned as to the validity of previous half-space
models of the relaxation process. In such models the fundamental core mode is
certainly absent, and, since such models are usually assumed to have uniform density,
the sequence of mantle overtones is absent also. The extent to which these modes
are important in the inhomogeneous problem is of course determined by the residues
7! which are associated with them, or, via the analysis in Gilbert (1970) of the relative
projection of the forcing upon the respective members of the sequence of normal
mode eigenfunctions. However, we have already solved the inhomogeneous problem
(albeit approximately) and so we have a good qualitative feel for the relative import-
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F1G. 14. Same as Fig. 12 except along the branch C0 in Fig. 11.

ance of the various modes as a function of I. Inspection of /,Y (¢) for model 1 in Fig. 5
shows that there are at least two important modes in this highly non-exponential
time history for sufficiently small I. Comparing Fig. 5 with Fig. 11 immediately
confirms that both C0 and MO are excited for this viscosity model. Furthermore,
it is not until [ & 10 that the decay curves become strictly exponential. Thus using
(17) we can see that if we were to employ a half-space model with this viscosity to fit a
relaxation curve then the half-space model would be highly inaccurate for wave-
numbers less than about 2x 10~ em™1. We will see shortly that this is the source of
a fundamental error in McConnell’s (1965) analysis which led him to believe that the
Earth’s mantle must have a viscosity which increases with depth. The presence of
the core and overtone modes as well as the fundamental mantle mode in the spherical
self-gravitating models is, on the other hand, the feature which allows such models
to fit the observed relaxation curves even with uniform mantle viscosity.

In Figs 15 and 16 we show examples of two further relaxation diagrams to illustrate
respectively, the effect of a high viscosity in the lower mantle and of a lithospheric lid.
Fig. 15 is the relaxation diagram for model 3 and Fig. 16 is the relaxation diagram
for model 4. Fig. 15 demonstrates that the effect of the high viscosity lower mantle
is to move the relaxation times for all modes with [ sufficiently small to much longer
times. For I sufficiently large the relaxation times are unaffected. This fact is strikingly
evident also in the approximate Love number time histories calculated previously
for the forced problem. Comparison of Figs 5 and 7 illustrates that the Love numbers
for small ! have very much longer decay times for the high lower mantle viscosity
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FiG. 15. Relaxation diagram for viscosity model 3. Note the increase in decay times
for modes with small / (large wavelength) from those in Fig. 11. The relaxation
times for the large / modes remain unchanged.

model than they do in the uniform case. Inspection of Fig. 15 seems also to confirm
the idea expressed previously in Paper 1 that the T modes are more important in this
model than they were found to be in the uniform case. In Fig. 15 the transition modes
are seen to be in much closer proximity to MO than before, and indeed, MO for small
lis rather like a transition mode.

Introduction of a lithosphere into the uniform model with a thickness of 120 km
and a viscosity of 10>° P (cgs) effects a pronounced change in the relaxation diagram
for large values of I as can be seen by inspection of Fig. 16. For MO the relaxation
time increases to [ = 30 then decreases sharply for larger I values. This effect is also
evident in McConnell’s (1965) half-space calculations. If v = oo in the lithosphere
which is the case McConnell treats, then the decrease in decay time for the MO mode
would continue for all I & 30. In the present example with v = 10?5 P in the litho-
sphere, the curve eventually turns back to the appropriate half-space asymptote on
which logs;! = —logky as before although the level of the curve is shifted from that
for the uniform 10?? P mantle because of the higher near surface viscosity. For small
values of I Z 6 both CO and MO are exactly as in the uniform case but the first mantle
overtone M1 is now found with much shortened decay times than previously. In the
range 5 < I < 7 a striking example of mode conversion is apparent. The mode CO
jumps to what was the M1 branch and M1 to what was the CO branch. This may be
confirmed by inspection of the square of the radially dependent strain deviator.

In Fig. 17 we have plotted wavenumber &, = (I+3)/a (in the asymptotic limit
(17)) as a function of relaxation time for the three principal modes of model 4 (i.e.
C0, MO, M1). The open circles are employed by McConnell in his half-space analysis,
~ the interpretation of which led him to conclude that the mantle should have a viscosity
which increases (perhaps strongly) as a function of depth. Because of the half-space
(constant density) approximation, the only relaxation curve he had to work with was
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FiG. 16. Partial relaxation diagram for viscosity model 4 which is the same as

model 1 except that it has a 120 km thick lithosphere with a viscosity » = 10*2

Poise (cgs). Note the sharp decrease in relaxation time for modes along the MO
branch for [ = 20.

our M0. For small wavenumbers, we see from Fig. 17, that MO has too short a relaxa-
tion time to satisfy the data. We can increase the relaxation times for M0 by increasing
the deep mantle viscosity and this was the approach McConnell was obliged to take.
However, with a spherical self-gravitating model we also have C0O and M1 available
to us and Fig. 17 shows that CO is strongly excited in the uniform mantle case. I
believe that this is a fundamental difficulty with McConnell’s interpretation. It
explains why the spherical self-gravitating models are able to fit the data with a uniform
mantle viscosity (Peltier & Andrews 1976).

Further inspection of Fig. 17 demonstrates that the turnover at large wavenumbers
which is characteristic of the data is not well fit by the model lithosphere which we
have adopted although the character of the M0 curve is certainly similar to that which
is observed. We expect that a perfectly elastic lithosphere which is on the order of
120 km thick, similar to that employed by McConnell, would allow us to fit the long
wavenumber tail on the relaxation curve with the spherical model just as McConnell
was able to fit this feature with his half space model.

We have shown in the above, that there exists a unique relaxation diagram which
is characteristic of every linear visco-elastic (Maxwell) model of the interior of the
Earth. This diagram plays precisely the same role in the problem of viscous gravita-
tional relaxation as does the dispersion relation in the problem of the elastic
gravitational free oscillations. In addition we have seen in equation (16) that the
viscous part of the solution to the inhomogeneous problem has the form of an
expansion in terms of the normal modes of relaxation. As stated previously this is the
property of the physical system which enables us to construct a simple first-order
perturbation theory for the determination of the viscosity in the deep interior of the
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FiG. 17. Equivalent wavenumber vs relaxation time plot for the dominant modes

of viscosity model 4 (crosses). Superimposed upon this theoretical data are the

observed relaxation times as a function of wavenumber deduced by McConnell
from the Fennoscandia data set.

planet. This theory is constructed and verified in the succeeding sections. We will
employ it in future to refine the viscosity models previously obtained by model
fitting.

3. Statement of the forward problem

Suppose we know that at some time in the past (say ¢ = 0) the surface distribution
of ice and water was in gravitational equilibrium with the underlying planet. Sub-
sequent to this time we suppose further that the total surface mass load began to
undergo a redistribution in response to a climatic change. The assumption of an
initial gravitational equilibrium is precisely equivalent to the assumption of an
initial © isostatic * equilibrium. If we knew with absolute accuracy the temporal and
spatial details of this load redistribution process and if we knew with the same
confidence that the planet could be described as a radially stratified Maxwell solid
with known density, Lamé constants, and Newtonian viscosity, then we could cal-
culate exactly the response of the planet to the redistribution of surface mass. This
is subject of course to the additional qualification that the strains produced by
unloading are small enough that the linearized field equations remain valid. For
example; if we wish to calculate the time dependence of the absolute radius at a
particular co-latitude and east longitude point on the surface with co-ordinates
(0, ¢) then we simply convolve the Green function in equation (12) with the known
load as

AR(0, , t) = [dt' [ dQ Ga(y, t—1") M(0, b, ') H(t") (20)
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where AR is the change in absolute radius, dQ’ is the element of area on the assumed
spherical surface and the angle y is the angular separation between the
¢ source point”’ (', ¢') and the *field point”’ (0, ¢). Equation (20) is the equation
we must be able to solve in order to do the forward problem. Of course (20) describes
only one signature of the response. It could also be described in terms of its gravity
anomaly, or surface tilt or by the time dependent separation between adjacent quasi-
spherical equi-potential surfaces (Farrell & Clark 1976, companion paper). Any of
these signatures may be determined by solving an equation like (20). We may choose
to do the convolution integral on the right-hand side spectrally by decomposing the
load M(0, ¢, ?) into its time dependent surface spherical harmonic coefficients or
we may choose to do it in grid point space. The latter approach was taken by Peltier
& Andrews (1976).

By assuming that the time dependence of the load is step discontinuous the con-
volution over time in (20) may be done analytically. This generates a new set of time
dependent Green functions which I have called Heaviside Green functions. These
new Green functions have been described in Peltier & Andrews (1976).

4. Statement of the inverse problem

In general the inverse problem for any signature of the isostatic adjustment process
is an awkward one because of the structure of the forward problem (20). In general,
we know neither the visco-elastic structure of the interior (which is contained in
the Green function), nor do we know the precise space time dependence of the surface
mass load. Therefore the problem is a highly non-linear one. If we suppose that the
radial variations of the Earth’s density and of its Lamé constants are determined exactly
by the free oscillations data then the model has only two unknown functionals. These
two functionals are the surface mass load (a function of position on the Earth’s
surface and of time) and the radially dependent Newtonian viscosity. The former
I shall refer to as the mass function ¢ M * and the latter as the viscosity functional
¢V’. With both M and ¥ unknown we are forced to adopt an iterative approach
to the resolution of the inverse problem. The space time dependent surface loads at
the end of the Pleistocene period have been described to zeroth order by Patterson
(1972) for the Laurentide region and by previous authors for the Fennoscandia area.
There are three main pieces of information required to produce such a description of
M. These are:

(a) The so-called  eustatic curves’ give the total mass influx of water into the
ocean basins as a function of time. (See the companion paper by Farrell and Clark
for a clear redefinition of this notion.)

(b) End moraine data provide isochrons on the time dependent position of the
edges of the major ice sheets.

(c) Ice mechanics (Patterson 1972) gives a theoretical prediction of the way in
which a given ice volume is distributed over a given surface area.

Errors in the application of all of (a)—(c) make the description of M inexact, however
we expect that the actual M does not differ too much from the M calculated in this
fashion. We make use of this prior knowledge of M to provide an initial linearization
of the inverse problem. That is, we make the initial assumption that M is precisely
known. Now M consists of two parts, these being M; which is the ¢ negative * load
applied by deglaciation and M|, the positive load applied by the simultaneous addition
of melt water to the ocean basins. Since mass must be conserved in this loading process
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if the hydrological cycle is closed we must have
M;+M, = 0. (2n

Equation (21) is the basis of (a) above. However, given M, we can in fact calculate
M, exactly not only with respect to its magnitude as has always been done in the past
but also with respect to the way in which M, is distributed over the known surface
of the ocean basins. To do this we simply demand that the oceans’ surface remains
an equipotential surface. Then M, is determined by inverting an integral equation
(Farrell & Clarke 1976). Thus the only unknown part of M is the ice functional M,
and this we can approximately determine using (a)-(c).

Given M approximately determined in the above fashion we may write the solution
(20) to the forward problem in the Laplace transform domain by applying the con-
volution theorem as

AR(0, ¢, 5) = [dQ' G(y, s) M(@', ¢, 5). (22)

The unknown viscosity functional ¥ is now imbedded in Gg. This solution of the
forward problem is now linear in ¥V with M given. In order to solve the inverse
problem for the determination of V' given AR(0, ¢, s) we must determine the sensitivity
of the change in radius AR to small spatially dependent changes in the Newtonian
viscosity v, say dv, where v = vo(r)+dv. We apply the formalism of the calculus of
variations to calculate this sensitivity. The first variation of equation (22) is just:

SAR(D, ¢, 5) = [dQ' 6Gg(y, 5) M(0', ¢, 5). (23)

where 6M = 0 since M is assumed known. Now using the definition (12) we may
write 8Gy, as

6Ga(r, 5) =~ 3 8 (s) Pi(cos ) 24)

since dh,F = 0 because we assume that the Lamé constants and density are known
exactly from the free oscillations data. The main problem we have to face here is the
problem of showing that the functional 6/," (s) evaluated at fixed s may be determined
exactly once the small variation v in an initial viscosity profile vo(r) is specified. To
proceed further we invoke the normal mode expansion of /" which in the Laplace
transform domain has the form (16), i.e.

I

Vv
by (s) = ? : +§ = (25)
The first variation of /,” (s) at fixed s may be found from (25) as
I [
sh7(s) = 5 20) 551,50 ) s (26)
7 05 i OF

Thus both the positions of the poles §; and their associated residues 7;' are affected
by the vanatlon of the viscosity év. The shift in the free decay pole of the relaxation
spectrum is 65 and the associated shift in its residue is 67;. Only if we can show that
both 65;' and 67} are expressible in terms of some weighted average of the viscosity
variation &v will it be possible to close the inverse theory for mantle viscosity with a
first-order perturbation analysis. The partial derivative terms in (26) may, of course,
be determined by direct differentiation of (25) as

on"(s) FJ-IL
st (s+5Y)? @7
ohf(s) 1 (2%)

oF  (s+§Y)
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From equation (22) we can pose a second inverse problem, besides that for mantle
viscosity which we have considered above. If we were in a position to state that the
viscosity of the mantle were known with greater accuracy than the distribution of
surface mass functional M, we could then formulate an inverse problem for M rather
than for the viscosity functional V. Again taking first order variations in (22) we
abtain

SAR(0, ¢, 5) = [dQ' Gx(y, s)SM (@', ¢, ). (29)

Therefore the differential kernels for the refinement of the mass functional are just
the surface load Green functions themselves. Equations like (29) determine the
sensitivity of the response to small variations in M.

If we can determine 54, (s) then we may proceed iteratively to refine our knowledge
of both ¥V and M. We first fix M and refine V. We then fix V and refine M, and hope
that the process of sequential refinement converges. This method of attack upon an
essentially non-linear problem has an exact analogy with the recent work of Gilbert &
Dziewonski (1975) on the inversion of the free oscillation data set. In their problem
there are also two distinct unknown components of the model system. The first of
these being the elastic structure of the interior and the second the moment tensor of
the earthquake which gave rise to the observed free oscillations. In the present problem
the viscosity functional V is analogous to their elasticity structure and the mass
functional M to their moment tensor.

In the next section we give the relationship between the variation in viscosity dv
and the shift in a free decay pole of the relaxation spectrum as required in equation
(26).

5. Differential kernel for the shift in a free decay pole

From the field equations (6) and (7) and the Laplace transformed constitutive
relation (2) we can derive a variational principle for the homogeneous problem.
This is exactly analogous to Rayleigh’s variational principle of elasticity. It states
(see Appendix A) that to first order the following integral relation is valid.

f do[2Ay Ay du(s)] = 0 (30)

V

where A;; is the Laplace transformed strain deviator defined in equation (19) and
where p(s) is the compliance defined in equation (4). The volume V is the Earth’s
volume. From equation (30) we can immediately deduce the expression for the
differential kernel relating the shift in a free decay pole of the relaxation spectrum to
a (small) change in the viscosity model 6v. We note from (4) that u(s) is a function
not only of the position of the pole s but also of the viscosity v. It is a function only of
these parameters since the Lamé constant p is assumed fixed. Thus for the variation
of u(s), du(s), we may write

av cs

Su(s) = (a‘“)saw (ﬁ‘f)vas | G1)

but from equation (4)

au(s) 12 s/v?
( dv ) = 5+ @My 32)
au(s)\ _  plpv)

( 0s )v T (s () (33)
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Both of the derivatives (32) and (33) arc positive definite, a fact which is important
to the structure of the differential kernel which we shall obtain. Substituting (31)

into (30) gives
fdu[a,,.a,.j((a—;i—s)-) 5v+(ii$)) 55)] = 0. (34)
v

Since neither s nor ds are functions of position we may extract them both from under
the integral sign and write

o Jen(E).2)

= (3%)

[l

v

This is a general cxpression for the shift in a free decay pole which we have been
seeking. Given év we can compute ds. Nowhere in the derivation of (35) have we
made any explicit restriction to the consideration of radial variations of viscosity
only. Equation (35) applies equally well to variations of viscosity which are arbitrary
functions of position within the spherical body so long as these variations are small.
The viscosity of the background state for which A;; is computed must of course be
radially stratified. The only previous attempt to derive a variational relation like (35)
of which I am aware is the work of Parsons (1972) which dealt with the non-gravitating
viscous half-space problem. The kernel which we have derived has exactly the same
principal part as the one obtained by Parsons (namely A;; A;;), but it determines the
shift in an arbitrary pole of the relaxation spectrum rather than the change in the
unique relaxation time for some particular wavenumber of the deformation. In the
spherical problem, as we have seen, any fixed harmonic has associated with it a
discrete set of relaxation times and equation (35) can be employed to determine the
shift of any one of these which is produced by a particular viscosity variation.

If we restrict our attention to variations of viscosity év(r) which are functions of
radius only then the problem of computing the kernels in (35) is reduced considerably.
We employ Backus’ (1967) result to the effect that for any vector field ii defined in
0 < r < a there are unique scalar fields U, ¥, W such that V and W average to zero on
every spherical surface concentric with the origin. These fields are defined as

ii=Ut+V, V—2AV, W (36)

with #, ® and ¢ unit vectors in the directions of increasing radius #, co-latitude  and
longitude ¢ and
v—ﬁ" +cosec 37)
1= 20 0sec ¢ ¢

Solutions of the spheroidal equations are such that W = 0 and the functions U and
V are just the radial and tangential displacements which we calculate as solutions to
the field equations. These functions, together with ¢ are all products of the form
U,(r) Y0, ), Vi(r) Yiu(0, ), &1 Yy(0, f,b) where Y;,(0, ¢) is a normalized surface
spherical harmonic. Backus & Gilbert (1968) describe in detail the reduction of the
kernels for the elastic gravitational free oscillations problem which are similar to that
in equation (35). Their arguments follow through exactly in the present case and we
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find that with 6v = 6v(r) equation (35) reduces to the following form

bl PN b ' (38)

a

fa'rrz K,(g%)v

b

The function K| is given by
Ky =3Q20,U,— F)* + (1/r) I(1+1) (0, V,~ Vi +U))?

+ (/A A=-DII+1) (14+2) V2 39)
where
F =(1/r2U,~1(1+1) V. (40)

In (38) the integration extends from the core-mantle boundary r = b to the Earth’s
surface r = a. The integral over the core vanishes because u(s) = 0 there. It should
be recalled that the functions U, and V; appearing in (39) and (40) are eigenfunctions
of the homogeneous problem and that (38) is thus valid only in the vicinity of an
eigenvalue s = 5;'. Explicit substitution of the partial derivatives (32) and (33) in
equation (38) gives

F Wiy v

i K——

55 J o [ I(5,-’+(;u/v))“] v
= . (1)

J 2 :
!drrz[K: (T;Tu(ﬁ?]

If we define x and y such that

Sj‘ = 10¥
] (42)
v=10"

then

x = 85;'/5;! ] )

dy = dvfy

and we see clearly revealed the intrinsic logarithmic scaling of the relaxation problem.
Equation (41) thus determines the relationship between the shift in the radially
dependent exponent of the viscosity model and the associated shift in the exponent of a
free decay pole in the relaxation spectrum. Because of the minus sign in (41) we see
that as the viscosity is perturbed to larger values then the decay time 7' =1 /s}'
increases. The exponent relation is such thatif §y = +1 thendx = —1,a very simple
result.

We have previously plotted in Figs 12-14 a series of differential kernels for the
shift in a free decay pole for all of M0, CO and M1 and for a variety of I values. We
have seen previously that these were highly diagnostic of the particular family of poles
to which a particular pole belonged. The reason for this intimate relation is of course
due to the connection between A;; A;; and the shear energy in the mode.

The relation (41) has been tested by assuming a variety of radially distributed
viscosity variations described through y(r) and computing the pole shift in the first-
order variational formula (41). The predicted pole shifts are then compared with
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Table 1
dx dx
Yo 85ar1 (first order) 8541 (actual) o7 error
0-005 —2-364-3 —2:343-3 <1
0-01 —4-729-3 —4-690-3 <1
0-05 —2-364-2 —2-500-2 5-7
0-1 —4-729-2 —5-000-2 5.4
0-5 —2-364-1 —2-258-1 4-8
1-0 —4-729-1 —3:660-1 29-0

the exact pole positions calculated for the new viscosity model. We assumed a simple

functional representation
8y(r) = yo cos [I(r—b)/(a—b)] (44)

with a range of perturbation amplitudes y,. The results of this test are listed in Table
1 for the M1 mode at I = 2. It will be seen by inspection of these results that the
problem is highly linear. Even with viscosity variations through the mantle which
are as large as 10? (with y, = 1) the prediction of the new pole location based on the
variational principle is surprisingly accurate although this accuracy certainly de-
creases as y, increases, the largest error being for y, = 1 and having a magnitude
equal to 30 per cent of the real shift in y. This is an extremely encouraging result
which leads us to expect that the linear inverse theory will be very rapidly convergent.
These linearity tests will be discussed in greater detail in the future.

6. An integral constraint relating the shift in a free decay pole to the shift in its associated
residue

In Section 4, it was shown that we had to determine the shift in the residue ;' asso-
ciated with the shift in the jth pole 3, in terms of 65 in order to close the theory in a
linear perturbation sense. Consider any one of the Love number s-spectra illustrated
in Section 2 for the solution of the inhomogeneous problem. Their viscous parts all
have an exact normal mode expansion in the form (16) which we reproduce here for
convenience as

<1
W) =3 —L @5)
7 8+5s;

Consider the limit of (45) as s —» 0. This is just
F 4
lim i)Y (s) = 3 =4 (46)
5—+0 J Sj

This function has a rather important physical meaning which was alluded to in Paper 1.
To appreciate this consider the /" () corresponding to (45). This has the simple form

Iy () = L Fiexp (-5 1). 47)
J

Suppose that the system (planet) were driven by a constant surface mass load applied
at t = 0 and maintained. The harmonic coefficients of the resulting temporal response
are obtained by convolving their impulse response forms (47) with a Heaviside step
function. These time dependent coefficients may be called Heaviside Love numbers

and they have the form
i (t) = hy(t) = H(1)

=1
=3 -Eﬁ— (1—exp (=5} 0)+h. (48)
P |
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These have been employed in Peltier & Andrews (1976) to synthesize Heaviside Green
functions while constructing solutions to the forward problem. If we strip off the
elastic response as usual by writing

MOy O (49)

1

V() = E_,: (L—exp (=5;'1)). (50)

<k

It will now be seen by inspection of equation (50) that the final amplitude of 4, ¥ (¢)
is just

I-..,

1]
-

I~ o

lim A7 (1) = 3 2
J

J]

= lim /47 s). (51)

Therefore the summation in equation (51) determines the maximum amplitude
of the harmonic component of order  when the planet relaxes in response to gravita-
tional interaction with a unit point mass applied to its surface and maintained. Of
course this is only the viscous part of the total distortion—but the elastic part is
simply an additive constant. This final amplitude is just the isostatically adjusted
amplitude of the particular harmonic in question. This isostatically adjusted amplitude
may therefore be read directly as the small s asymptote of the Love number s-spectrum
for that harmonic according to the equivalence expressed by equation (51). Further-
more, since the Maxwell solid is viscously incompressible no variations in density
are produced in the viscous relaxation process. Thus the final isostatically adjusted
state for each harmonic is unique and independent of the particular viscosity model of
the interior which we have chosen (M constant). That this is indeed so may be con-
firmed by direct inspection of the Love number s-spectra shown in Section 2 for three
widely different viscosity models. This conclusion may also be reached by argument
from first principles but the exercise is straightforward and we will not give it here.
The net effect of adjustment for a Maxwell solid is simply a change in the planet’s
shape.

Although the time taken for a particular model to reach its final state of isostatic
equilibrium may vary widely from model to model this final state is inevitably the
same state so long as M is fixed. Therefore, there exists a constraint on all visco-
elastic (Maxwell) models of the interior such that the parameter

?-" 1
L= > s— (52)

J

is a constant for fixed /. This physical constraint is the factor which makes it possible
to rigorously invert the inhomogeneous problcm In equation (26) we require a
relation between the shift in the jth residue 7} for degree I and the shift in the pole
(- )53 with which it is associated.

To calculate this quantity we suppose that an initial mantle viscosity proﬁle v(r)
is subject to 2 parucular variation Av(r) which need not be small. Then 5;' — §;+ A3}’
and r} -7 +Ar but since the isostatic state is unique for a fixed applled load
therefore the number &, in (52) does not change. Thus

F P+ AR
F=F =Ry (53)
i 8 i S S
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Now in general equation (53) is an integral constraint on the system and it does
not follow immediately in the sum

a ] sl Al
_ﬂ-_'_'r‘-}-ArA =0

that the separate terms for each j cancel term by term. Smce Av(r) may be arbitrarily
large it may force arbttlarlly large variations AF;' and A§;'. Thus modes which are
only weakly excited in the v(r) state (i.e. have small assomated residues) may be very
efficiently excited in the perturbed state v(r)+ Av(r). However if we restrict our
attention to perturba{ions Av(r) = dv(r) which are sufficiently small then we may
expand the function f(7'+ Ar/, 5!+ A§;) in a two-dimensional Tayler series about
its value f (7}, §;) in which case wc obtain from (54)

):((—j’)—zab —éar-;) =0

in which we may reasonably expect the series to vanish term by term. This leads to
the result

8F} =~ 08} (5%

which is the required relation between the shift in the jth pole and the associated
shift in the jth residue. In deriving it we have made use of the fact that for the forced
viscous gravitational relaxation of a Maxwell solid the final gravitational equilibrium
configuration (isostatic state) is unique.

Substitution of (55) into (26), making use of the partial derivatives (27) and (28)
leads to the following expression for the variation of the Love number /;(s) (similar
expressions may also be derived of course for the remaining Love numbers k(s)
and 1,(s))

=7 =1
§ r; l

5h() = (ﬁ)awz(q i) T = G 9

It is equation (56) which makes rigorous inversion of isostatic adjustment data
possible. This equation coupled with equation (51) gives the variation in the surface
load Love numbers /1,(s) directly in the form of an integral over the distributed vis-
cosity variation dv(r). We are thus in a position to claim to have constructed a com-
plete inverse theory for the forced relaxation problem. There are several elaborations
of this theory, however, which are required to meet the demands of the data set which
we have available. This data set has been discussed in detail by Peltier & Andrews
(1976, companion paper). The main difficulty which we have to face in inverting this
observational data arises due to the fact that these data are only sparsely available
as individual submerged and/or elevated beach histories in the space domain. This
means that we cannot hope to decompose them into their various time dependent
spherical harmonic constituents. Secondly, we ¢ see ” each piece of information at a
fixed point in space through a relatively narrow time window so that it would also
appear hopeless to attempt to transform each of these relaxation time series into the
Laplace domain where all of the previous discussion has been formulated. In the next
section we see that these constraints oblige us to recast the discussion into a rather
special form.
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7. A pseudo-spectral form of the inverse theory

The foregoing brief remarks on the available Quaternary data set and the more
comprehensive description in Peltier & Andrews (companion paper) has illustrated
two distinct characteristics of these data. These characteristics force the theory to
satisfy two important constraints: (a) since each gross earth datum refers to a specific
(0, ¢) point on the Earth’s surface so must the predictions of the model, and (b) since
we © see ’ the response through a time window which varies in duration between each
of the surface points at which we have data from times on the order of 5K years to
times on the order of 10 K years the predictions of the model must refer to fixed points
in time. We must construct a point-by-point and time-by-time solution to the inverse
problem. This would appear at the outset to be a much ¢ messier > proposition to
entertain than those which have been previously encountered in geophysical inverse
problems. Fortunately the previous theoretical results allow us to accomplish this
task in a straightforward fashion. The resulting computational structure is certainly
no more difficult than that for the free oscillations problem to which the relaxation
problem is, in a spectral sense, orthogonal. For the sake of explicitness we will confine
our initial elaboration to the formalism for the inverse of one particular signature of
the adjustment process: namely the absolute variations in local radius which are at
least approximately frozen into the relative sea-level curves which have been thorough-
ly discussed in Peltier & Andrews (1976), but see the discussion in the second com-
panion paper by Farrell & Clark (1976).

Suppose that the entire surface mass load M (0, ¢) melted at a particular instant
of time which we shall take to define the origin in time # = 0. From (20) we may show
that the absolute change in local radius at a particular surface location (6, ¢) as a
function of time # is given by

AR(0, ¢, 1) = [dQ' G (, ) M (€', §") (67

where dQ' is the element of surface area as before and where Gz¥(y, 1) is the Heaviside
Green function determined by substituting in equation (11) the Heaviside Love
numbers (48) in place of their impulse response forms and where explicitly now

cosy = cosf cos0' +sinf sin ' cos (¢ —¢') (58)

is the cosine of the spherical angle separating source point (¢’, ¢’) from field point
(0, ¢) in the convolution integral (57). Since we assume that the mass functional M
is known exactly we can decompose it spectrally into its various harmonic constituents
as

MO$) = 5 5 Mo Yenl, ) (59)

where Y} ,.(0', ¢") are the usual fully-normalized surface spherical harmonics (Jackson
1962). We also require the addition theorem for spherical harmonics (Jackson 1962)
which states that

4
Pj(cosy) = il ms Y0, ") Yiu(0, ¢) (60)

where * indicates complex conjugation. In the definition of Gg™(y, £) where

Ga(r, 1) = == 3 (1) Pi(cos) (61

we may substitute (60) and insert this spectral decomposition of Ggf(y, ) into the
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solution of the direct problem (57) to obtain

ARG, ¢, 1) = [dQ — 3 hH(D)
m, 1=0
M S YO, 8) Y6 ) 3 5 Mom Yem(8,8). (62
8 2141 .,.2:_; in ¢ J"'('tﬁ)r;owz:. vm Yew(0',¢). (62)

If we next operate through the summation signs in (62) with the surface integral and
make use of the orthogonality relation between the Y;,(0, ¢), namely

JaQ Y50, ¢) Yo (0, ¢") = Sur Opumr (63)
then equation (62) is reduced to the form

AMa = hE@)

Z 2 M Im Ylm(ga ‘?5)- (64)

AR, ¢, 1) = m, 150 2l4+1 m==

It is equation (64) which we shall employ in our solution of the inverse problem. It
is pseudo-spectral in that no transformation of the observations (say AR(0, ¢, 1)) are
required yet we assume that the mass functional M can be decomposed into its spherical
harmonic constituents. Since we assume initially that M is exactly known this
decomposition can be affected with arbitrary accuracy.

The first variation of equation (64) is then just

4lla = Oh"
5k, 9,0 =L § DD 5 70,9 ©9)

Now A(r) has been given previously in (50) (the viscous part) and its variation is
just

R Y (1) oh™ V(1)
Hepy — spHVey — 5 20 A soi ot ) ooy :
ohM(t) = oV (1) = ; % 05; +>;‘ o7 OF;. (66)
Where in (66) the partial derivatives are
ohE Y (t 7!
—-%?Ll = —:—jl— (t5) exp (=5 )—1+exp (—35'1) (67)
J
om™¥(®) _ (1—exp(=§'0) ©8)
oF ! 5/ '
Substitution of (68), (67) and (55) into (66) gives the simple form
=1
ShEY (1) =3 % texp (=35, 1)05. (9)
=5

J

Inspection of (69) shows that this is exactly the result we would obtain by spectral
convolution of (56) with a unit step followed by transformation to the time domain
as must certaintly be the case. If we use (41) in (69) we obtain the following explicit
expression for the first variation of 64, ¥ (r)
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e M) v
g R oroar
SV (1) = 37 texp (=5 ) —— ) o
7 (#2/ v)

[ dri? K, ——
b.' L+ ()
The integral in the denominator of (70) is of course just a normalization factor which
ensures that the basic kernels are unimodular. Call this factor N;/. The integral in
the numerator may be pulled outside the summation sign to give

H Ve d 2 ov
ShH Y (1) = bf dre o, 1)~ (71)
where clearly
1 1exp (=5'0) (7))
J{-I(r! t) o j N; 1 (Ej{_l_(.u/v))z (“"2)
f drr? K —E @)
&'+ M)

Next making use of (71) in (65) and again taking the integral outside the sum we
obtain

‘x/‘l(r: ‘r)
o 2141

Ms

SAR(, , 1) = [mﬁ%" [m"
;

mg 1

.,,i, M 1, Yin(0, ¢)]. (74)

1]

The term in square brackets is clearly the Fréchet kernel (Backus & Gilbert 1967)
for the space-time inverse. Equation (74) is one of the main results of this paper.
With it we may study the inverse problem for mantle viscosity be assimilating directly
the raised beach data which form the basic constituents of the Quaternary data set.
This data will not have to be transformed in any way since equation (74) is an explicit
relation between a radially distributed viscosity variation and the perturbation of the
amplitude of the response at a particular (0, ¢) location on the surface and at a
particular time 7. We will be able to directly incorporate into the theory the real errors
in the determination of the height above present sea level of a given beach and the
real errors in the determination of the age of the beach via the C'# technique.

Exactly the same methods as those employed above may be used to construct
appropriate kernels for the study of the gravity anomaly produced by the isostatic
adjustment process and for the observed present-day rates of uplift. In fact, the
kernel for present day rate of uplift (or at any time in the past) can be obtained from
equation (74) simply by time differentiation. More specialized kernels may also be
formed; for instance one may easily construct a kernel for the sensitivity of the non-
tidal deceleration of the Earth’s rotation to variations in the radial viscosity profile.

There is one minor point which remains to be settled regarding the previous
development. This concerns the fact that we have assumed a very special form for
the time history of the load, namely that it was entirely removed at one fixed instant.
The required modification of theory necessary to incorporate a more general style of
load removal is, however, rather straightforward and we shall give it here for
completeness.

Any continuous history of load removal and application (redistribution) may be
approximated by a series of discrete steps. We shall call such an approximation a
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model of ¢ stepwise discontinuous deglaciation *. Such a model has the mathematical
form

M@, $,0)= T M0, H(~1) (75)

where the #, are a series of discrete times bracketing the deglaciation history with
o = 0 being the assumed first instant of melting and M"(0, ¢) the space dependent
load redistribution at time 7,. For ¢ < f, the system is assumed to be in isostatic
equilibrium. Returning to the forward problem as expressed in (20) we substitute
from equation (75) to obtain

AR(B: ¢9 I) = de’ GR(?: t— t') Z ‘,{{"(0’ ¢) H(t"_ n) (?6)

or equivalently in the Laplace transform domain
,a e o EXP(—1,5)
AR, $,5) = B[ — 3 Iy(s) Pi(cosy) MW, §)———">.  (T])
Transformation of (77) back to the time domain gives

AR, §,1) = 2 [ — 3 h(1~1,) Pi(cos y) "D, &) )
where

=1
hE(t—1t) = ?% 1—exp [(—5§'(t—t)]+1E6(t—1,) forz>1,
)

=0 fort<t, (79)

The differential kernels for the new problem involving the more complicated load
removal history (75) are obtained in precisely the same way as before. The modification
of the mathematical expression for the kernel is thus a simple one, involving a set of
correctly phased (through #,) and weighted (through M"(0', ¢")) versions of the old
kernel in (74).

8. Discussion

In the preceding sections we have demonstrated that the inverse theory for mantle
viscosity is well posed within the framework of a first order perturbation theory and
have derived the appropriate expressions for the differential kernels of the inhomo-
geneous problem. The only previous work on this subject of which I am aware is that
due to Parsons (1972) whose discussion was confined to the half-space problem and
dealt only with the homogeneous case. The theory given here is rigorous in the sense
that it includes all of the essential physical ingredients of the adjustment process.
This process is one which demands for its full understanding the treatment of the
gravitational interaction between the time dependent surface mass load and the
underlying planet within the correct topological framework. It is clearly not sufficient
to consider the free decay characteristics of the medium and to base inferences of
mantle viscosity upon them. We do not observe free decay times directly but rather
the time dependent amplitude of some signature of the response to a specific applied
load. Itisthe magnitude and surface distribution of the applied load which determines
the final isostatically adjusted state.

In developing this formalism we have obtained a variational principle which
applies to the free decay regime of a self-gravitating visco-elastic (Maxwell) spheroid.
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In several respects this variational principle is similar to the one obtained earlier by
Parsons (1972) for the non-gravitating half-space problem. Here however, it deter-
mines the change in position of any one of the multiplicity of normal modes of viscous
gravitational relaxation belonging to a particular harmonic of order I. This principle
is not restricted in its application to spheroids which have only radial perturbations
of the radially stratified viscosity of their base state. It may also be applied in principle
to determine corrections to the free decay times forced by lateral variations of viscosity.
We can expect the normal modes to be split by such inhomogeneity. Again this pro-
blem has an exact analogue with determining the variations in eigenfrequency for the
elastic gravitational free modes of oscillation which are forced by small lateral varia-
tions in elastic structure (Luh 1974). A further second-order correction which we
might make is that due to the ellipticity of figure.

As stated in Paper 1, our objective in all of this is to attempt a rigorous examination
of the extent to which a simple Maxwell model of the interior is capable of providing
accord with the known Quaternary data set. We seek to understand, therefore, the
extent to which a Newtonian model of the relaxation mechanism is an appropriate
one in so far as isostatic adjustment is concerned. If it turns out that the Newtonian
model is an appropriate one then by implication the mechanism by which mantle
material ¢ creeps ’ is essentially Herring-Nabarro (Herring 1950). In order to verify
the validity of this implication we will have to demonstrate that alternative non-linear
creep mechanisms are incapable of providing similar accord with the data. Whether
or not this stage of the analysis can be successfully completed remains to be seen.

Initial experience with the forward problem (Cathles 1971, 1975; Peltier 1974;
Peltier & Andrews 1976) has indicated that within the context of a spherical Maxwell
model a uniform mantle viscosity of about 10?? P may be most appropriate.

McConnell (1965) and Peltier & Andrews (1976) respectively for the Fennoscandia
and for the Laurentide data have shown that the presence of a lithosphere is an
absolute necessity if one is to fit all the relaxation data. With an inviscid core this
planetary model will be employed as a first guess in the inverse theory. If this model
is reinforced by the calculation suggested here then the implications for work on mantle
convection are important. It has been shown previously (Peltier 1972) that if the
radial variation of mantle viscosity is not ¢ extreme * then the radial mixing length for
thermal convection in this system is liable to be on the order of the thickness of the
mantle itself.

Acknowledgments

1 am indebted to W. E. Farrell and M. L. Smith for useful suggestions which have
helped a great deal in the development of this work. The continued support of the
Co-operative Institute for Research in Environmental Sciences (CIRES) and the
Institute for Arctic and Alpine Research (INSTAAR) is much appreciated.

References

Alterman, Z., Jarosch, H. & Pekeris, C. L., 1951. Propagation of Rayleigh waves in
the Earth, Geophys. J. R. astr. Soc., 4,219-241.

Andrews, I., 1974. Glacial isostacy, Dowden, Hutchinson and Ross, Inc., Stroudsburg,
Pennsylvania, USA.

Backus, G. E., 1967. Converting vector and tensor equations to scalar equations in
spherical co-ordinates, Geophys. J. R. astr. Soc., 13, 71-101.

Backus, G. E. & Gilbert, J. F., 1967. Numerical applications of a formalism for
geophysical inverse problems, Geophys. J. R. astr. Soc., 13, 247-276.

Brennen, Christopher, 1974. Isostatic recovery and the strain rate dependent viscosity
of the Earth’s mantle, J. geophys. Res., 79, 3993-4001.



Glacial-Isostatic adjustment—IT 701

Cathles, L. M., 1971. The viscosity of the Earth’s mantle, PhD thesis, Princeton
University, Princeton, New Jersey, USA.

Cathles, L. M., 1975. Viscosity of the Earth’s mantle, Princeton University Press,
New Jersey, USA.

Crittendon, M. D., 1963. Effective viscosity of the earth derived from isostatic
loading of Pleistocene Lake Bonneville, J. geophys. Res., 68, 5517.

Darwin, G. H., 1879. On the bodily tides of viscous and semi-elastic spheroids,
and on the ocean tides upon a yielding nucleus, Phil. Trans. R. Soc. Lond. A.,
1970, 1.

Dicke, R. H., 1969. Average acceleration of the earth’s rotation and the viscosity
of the deep mantle, J. geophys. Res., 74 (25), 5895-5902.

Farrell, W. E., 1972. Deformation of the earth by surface loads, Rev. Geophys.
Space Phys., 10, 761-797.

Farrell, W. E. & Clark, J. A., 1976. On postglacial sea level, Geophys. J. R. astr.
Soc., 46, 647-667.

Gilbert, F., 1970. Excitation of the normal modes of the Earth by earthquake sources,
Geophys. J. R. astr. Soc., 22, 223.

Gilbert, F. & Dziewonski, A., 1975. An application of normal mode theory to the
retrieval of structural parameters and source mechanisms from seismic spectra,
Phil. Trans. R. Soc. London. A., 278, 187.

Goldreich, P. & Toomre, A., 1969. Some remarks on polar wandering, J. geophys.
Res., 74, 2555.

Haskell, N. A., 1935. The motion of a viscous fluid under a surface load, 1, Physics,
6 (8), 265-269.

Haskell, N. A., 1936. The motion of a viscous fluid under a surface load, 2, Physics,
7 (2), 56-61.

Haskell, N. A., 1937. The viscosity of the asthenosphere, Am. J. Sei., 33 (193), 22-28.

Heiskanen, W. A. & Vening Meinesz, F. A. 1958. The Earth and its gravity field,
McGraw-Hill, New York.

Herring, C., 1950. Diffusional viscosity of a polycrystalline solid, J. appl. Phys.,
21, 437.

Jackson, J. D., 1962. Classical electrodynamics, John Wiley & Sons, Inc., New
York.

Luh, P. C, 1974. Normal modes of a rotating, self-gravitating inhomogeneous earth,
Geophys. J. R. astr. Soc., 38, 187-224.

Malvern, L. E., 1969. Introduction to the mechanics of a continuous medium, Prentice—
Hall, Inc., Englewood Cliffs, New Jersey, USA.

McConnell, R. K., 1965. Isostatic adjustment in a layered Earth, J. geophys. Res.,
70, 5171.

McConnell, R. K., 1968. Viscosity of the mantle from relaxation time spectra of
isostatic adjustment, J. geophys. Res., 73 (22), 7089-7105.

Munk, W. H. & MacDonald, G. J. F., 1960. The rotation of the Earth, Cambridge
University Press, Cambridge.

Niskanen, E., 1948. On the viscosity of the earth’s interior and crust, Ann. Acad. Sci.
Fenn., Ser. A, 3 (15), 22.

O’Connell, R. J., 1971. Pleistocene glaciation and the viscosity of the lower mantle,
Geophys. J. R. astr. Soc., 23,299.

Parsons, B. E., 1972. Changes in the Earth’s shape, PhD thesis, Cambridge University,
Cambridge.

Paterson, W. S. B., 1972. Laurentide ice sheet: Estimated volumes during late
Wisconsin, Rev. Geophys. Space Phys., 10, 885-916.

Peltier, W. R., 1972. Penetrative convection in the planetary mantle, Geophys. Fluid
Dyn., 3, 265.



702 W. R. Peltier

Peltier, W. R., 1974. The impulse response of a Maxwell earth, Rev. Geophys. Space
Phys., 12, 649.

Peltier, W. R. & Andrews, J. T., 1976. Glacial-Isostatic adjustment—I Geophys. J. R.
astr. Soc., 46, 605-646.

Schapery, R. A., 1962. Irreversible thermodynamics and variational principles with
application to visco-elasticity, PhD thesis, California Institute of Technology,
Pasadena, USA.

Vening Meinesz, F. A., 1937. The determination of the earth’s plasticity from post-
glacial uplift of Scandinavia: Isostatic adjustment, Proc. Kon. Ned. Akad.
Wetensch, 40, 654-662.

Walcott, R. I., 1972. Late Quaternary vertical movements in eastern North America:
Quantitative evidence of glacio-isostatic rebound, Rev. Geophys. Space Phys,. 10,
849,

Weertman, J., 1970. The crcep strength of the earth’s mantle, Rev. Geophys. Space
Phys., 8, 145-168.

Appendix A

Differential kernel for the shift in a free decay pole—a variational principle

In this appendix we deduce from the field equations (5) and (6) and the constitutive
relation (2) the general variational principle stated in Section 5. We begin by reducing
the constitutive relation (2) to a form which is more appropriate to the present
application.

Define a compliance K(s) such that (in analogy with the elastic problem)

K(s) = A(5)+3u(5). (80)
Direct substitution of the forms (3) and (4) for A(s) and p(s) into (80) gives
K(s) = K..

This follows from the simple physical fact that the Maxwell solid is viscously incom-
pressible. Therefore the constitutive relation (2) may be rewritten as

Ty = (Ke—3R(5) €:0;+2p(5) &5 @1
Equation (81) may also be expanded in the following form (Malvern 1969):
Ty = Ciju(s) & (82)
where the fourth rank tensor C;j,(s) has the explicit form
Cr’jkl(s) = (Ke —.7?#(5)) 5:} O+ 1(s) (O 5}1 +64 5;&) (83)

where 6;; is the usual Kroenecker delta function and the Einstein summation con-
vention over repeated indices is assumed. Equation (23) follows because C; ua(s) is
assumed to be an isotropic tensor. A general discussion may be found in Malvern
(1969).

We assume for our present purpose that the boundary conditions subject to which
we are attempting to solve the field equations (5) and (6) are those corresponding to
stress free conditions.

To determine the general form of the differential kernels for the free decay time
history we operate on equation (5) by taking its inner product with a new solution
vector #; which satisfies the same differential equations and boundary conditions as ;.
We similarly operate on equation (6) by multiplication with the perturbation in the
gravitational potential ¢* which corresponds via Poisson’s equation to the new
displacement vector #;. We divide the resulting equation from (6) x ¢* by the factor
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(4nG)~ ! add it to the equation which results from (5)x #; and integrate over the
infinitec domain. The result is an energy relation which has the form

| 8107 510upiis &) = pB:0: -+ 81210, (pii) ] dv
E

+ f [$* V2 $.(4TIG) ™! + * 8,(pit)] dv = 0. (84)

In cquation (24) E is the whole infinite space, g; = 0; ¢, where ¢, is the ambient
gravitational potential which is assumed radial and the abbreviation ¢; = 6/0x;.

We next want to reduce equation (84) to a more physically meaningful form. The
first integral in (84) contains the displacement field (transformed) in every term so
that this integral is equivalent to an integration over the Earth’s volume since clearly
ii; vanishes outside. We next invoke Gauss theorem to reduce the first term in this
integral using the tensor relation

ﬁiajf;j = 3i(ﬁj.’fu)—(ﬁj ﬁi) %ij' (85)
By Gauss theorem the integral of the first term of (85) over the volume reduces to the
integral of the normal component of #;7;; over the surface. But the stress on the

outer surface has been assumed to vanish thus this term gives zero identically. Thus
under the integral sign in (84) we have

5,-3_,-?,; = _aJ ﬁirl'j' (86)

The first term in the second integral of (84) may be reduced using exactly the same
procedure but here the bounding surface is taken at infinity where the perturbation
in the potential field is assumed to vanish. Under the sign of the second integral in
(84) we can then write

¢* V2 P@IIG) ™' = —0;¢*.0; p(4IIG) ™. (87)

Next we transfer the third term of the first integral in (84) into the second integral
which is allowed since the domains over which the term is non-zero are the same.
These operations reduce equation (84) to the slightly simpler form

J [—0; 0 %i;— 10 04(pit; &) +0; g: 0;(pii)] dv
+j[ 0 §*.9; ATIG) ™' pi; &, §—pi, 0; F*]dv = 0. (88)

The second term in the first integral may be written as
—0;0,(pti; 8;) = —0;[g; 0:(ptiy) + pu; 0, 8] (89)
We can further reduce equation (88) by noting that
5,' U; fu = 'aj 5-’[Cuk1(5) eyl
= K, 0; 7,0y tf,— 3 u(s) 0; B; Gy iy,
+ u(s) 9; 0 6; iy + pu(s) 0; By O . 90)

But equahon (90) has a very simple expression in terms of the Laplace transform of
the strain deviator A;; where

Ky = 3@, 40, 1) 0, 1,8 oD

--""L(C’;I'. +a 1) i‘aktl if

and
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such that
;0% = 28, A} + K, 0, 5,0, . (92)

Inserting equations (92) and (89) into the Laplace transform domain energy
relation (88) we have finally

j (K. 85,0, @ +20(s) Ky K+ p5,* 0,0, $o +; 05,9, pity— 5,0, pit )] do

+fdv[a &% 0, B@ATIG) ™! + p,0, § -+ pit 0, 3*] = 93)

It will be noted that this is precisely analogous to the equivalent elastic energy
relation employed by Backus & Gilbert (1967) (their equation (29)), for application
to the derivation of differential kernels for the frequencies of the normal modes of
elastic-gravitational free oscillation of the Earth. By application of the correspondence
principle we arrive at an energy relation which is precisely analogous to theirs but of
course is valid in the Laplace transform domain of the imaginary frequency s rather
than in the Fourier transform domain of the real frequency w. To obtain the expression
analogous to the Backus & Gilbert equation (29), with minor differences that are of
no consequence, we simply take ; = ii;and ¢* =

Next we employ the technique of perturbation operators to show that the Laplace
transform domain energy relation (93) may be used to obtain a relationship between
a small variation in the v:scosﬂy structure of the model 6v and the shift in a free decay
pole (say any one of the (—) 5 introduced previously.

We may write our orlgmal field equations (5) and (6) in operator form as

28 =0 (94)

where & = (il;, ¢) is the solution 4-vector and & is a lumped differential operator,
the form of which is obvious from the original field equations. In operator form we
may thus represent the energy relation (93) in the form

f.Sf"‘..Z’..‘?"dv=0 95)

where &* = (i, %) is the new solution 4-vector introduced previously. But
inspection of equation (93) shows immediately that

f&""‘.ﬂ".?dv: f(yy)*.ydu (96)
v v

so long as we are willing to restrict ourselves to consideration of real values of the
Laplace transform variable s. Under this restriction . is a real differential operator
and thus Hermitian, This important property of % for real s is the factor which
makes it possible to obtain the general form of the variational principle which we are
seeking.

We introduce a further abbreviation of notation by introducing the notion of an
inner product on our space of 4 dimensional solutions & by defining

(P L Py = fy*..e’ydu. ©7)

Then equation (96) may be simply represented as
F"N LS =(LI*" &) (98)
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where the operation of taking the complex conjugate denoted by *, does not affect
% since it is a real operator as noted previously.

We next consider the functional ¢ defined by taking &#* = & in the left-hand side
of the energy relation (93) and enquiring as to the variation of this functional under
small variations of the viscosity model dv.

If & = (ii;, ¢) is a solution to (5) and (6) then by definition ¢ = 0. Suppose that
the rheological parameters are allowed to vary slightly such that v — v+46v keeping
the density and the Lamé parameters fixed. Thus any free decay pole s = s;' will shift
slightly such that s;! — s;'+s;’ and the operator & since it depends both upon v and
upon s will become & +0.% in the process. For the new solution & +6% and the new
operator .Z +6.% we must have

(P +8F, (L +6L) (P +5F)) =0 (99)

since (94) is a property of all solutions. For the sake of completeness we write out all
terms of equation (99). Itisequivalent to the eight terms

(P L LIS, LOFL Y+ LS 8L P +(L, 0L 5F)
+ 3P, L PI+LBL, LOPY+ L, 8L P+ 8F, 6L 65y =0. (100)

We can reduce equation (100) as follows. First drop all terms of order 6* and higher
because we are considering only small variations dv in the viscosity model. This gives

(L, L SLY+LL, L OS>+ LFL 0L P Y+ S, L F ) =0. (101)

The first term in equation (101) is just e = 0 and the last term vanishes because
% % = 0 is the original coupled set of differential equations. Furthermore the second
term in equation (101) vanishes because of the previously stated Hermitian property
of & for real values of s (equation (98)). Thus equation (101) reduces to

(FPLFPY=0 (102)

which is precisely the variational principle which we have been seeking.

It should be noticed that the structure of this variational principle is quite different
from that due to Rayleigh and employed by Backus & Gilbert (1967) in their discussion
of the elastic gravitational modes of free oscillation of the Earth, although it does have
a superficial similarity. In that application the term (%, £¢ &) vanishes because
to first order the change in the eigenfunction &, 6, is orthogonal to & itself. Here
the critical term vanishes because not only is % Hermitian but & & = 0 since
the deformation is assumed quasistatic (inertial forces are negligible). Furthermore
the term (&, & &) gives a finite contribution whereas here for the same reason as
above, namely % & = 0, it vanishes identically.

To first-order equation (102) therefore states that the change in the solution
vector & is unimportant, it is only the change in the s-dependent rheological para-
meters which must be taken into account. If we fix the elastic structure of the model,
including the density since the Maxwell solid is viscously incompressible then since &
is stationary to first order, i.e. ¢ remains zero under small variations of rheology we
must have from equation (93) that

f do[2A,; A% Su(s)] = 0. (103)

From equation (103) we can immediately deduce the expression for the differential
kernel relating the shift in a free decay pole of the relaxation spectrum to a (small)
change in the viscosity distribution, dv. This analysis is given in Section 5, where
(103) is taken as the starting point.
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